A satellite dish is a dish-shaped type of parabolic antenna designed to receive or transmit information by to or from a communication satellite. The term most commonly means a dish which receives direct-broadcast satellite television from a direct broadcast satellite in geostationary orbit.
Parabolic or "dish" antennas had been in use as radio telescopes (beginning in 1937) and airplane tracking by the military (during WWII) long before the first artificial satellite was launched in 1957.
The term satellite dish was coined in 1978 during the beginning of the satellite television industry, and came to refer to dish antennas that send and/or receive signals from communications satellites. Taylor Howard of San Andreas, California, adapted an ex-military dish in 1976 and became the first person to receive satellite television signals using it.
The first satellite television dishes were built to receive signals on the C-band analog, and were very large. The front cover of the 1979 Neiman-Marcus Christmas catalog featured the first home satellite TV stations on sale. The dishes were nearly in diameter. The satellite dishes of the early 1980s were in diameter and made of fiberglass with an embedded layer of wire mesh or aluminium foil, or solid aluminium or steel.
Satellite dishes made of wire mesh first came out in the early 1980s, and were at first in diameter. As the front-end technology improved and the noise figure of the LNBs fell, the size shrank to a few years later, and continued to get smaller reducing to feet by the late 1980s and by the early 1990s. Larger dishes continued to be used, however. In December 1988, Luxembourg's Astra 1A satellite began transmitting analog television signals on the Ku band for the European market. This allowed small dishes (90 cm) to be used reliably for the first time.
In the early 1990s, four large American cable companies founded PrimeStar, a direct broadcasting company using medium power satellites. The relatively strong Ku band transmissions allowed the use of dishes as small as 90 cm for the first time. On 4 March 1996, EchoStar introduced Digital Sky Highway (Dish Network). This was the first widely used direct-broadcast satellite television system and allowed dishes as small as 20 inches (51 cm) to be used. This great decrease of dish size also allowed satellite dishes to be installed on vehicles. Dishes this size are still in use today. Television stations, however, still prefer to transmit their signals on the C-band analog with large dishes due to the fact that C-band signals are less prone to rain fade than Ku band signals.
The theoretical gain (Antenna gain) of a dish increases as the frequency increases. The actual gain depends on many factors including surface finish, accuracy of shape, feedhorn matching. A typical value for a consumer type 60 cm satellite dish at 11.75 GHz is 37.50 dB.
With lower frequencies, C-band for example, dish designers have a wider choice of materials. The large size of dish required for lower frequencies led to the dishes being constructed from metal mesh on a metal framework. At higher frequencies, mesh type designs are rarer though some designs have used a solid dish with perforations.
A common misconception is that the LNBF (low-noise block/feedhorn), the device at the front of the dish, receives the signal directly from the atmosphere. For instance, one BBC News downlink shows a "red signal" being received by the LNBF directly instead of being beamed to the dish, which because of its parabolic shape will collect the signal into a smaller area and deliver it to the LNBF.
Modern dishes intended for home television use are generally 43 cm (18 in) to 80 cm (31 in) in diameter, and are fixed in one position, for Ku-band reception from one orbital position. Prior to the existence of direct broadcast satellite services, home users would generally have a motorised C-band dish of up to 3 m in diameter for reception of channels from different satellites. Overly small dishes can still cause problems, however, including rain fade and interference from adjacent satellites.
Motor-driven dishes come in a variety of sizes, but a dish of at least is required to receive signals from distant satellites which are intended to serve other areas.
With DiSEqC and USALS, the satellite dish will automatically aim itself at one of sixteen satellites programmed in previously when pressing one of the channel buttons on the remote. Motor-driven satellite dishes using USALS can detect other satellites in a constellation after one has been found and aimed at.
Most receivers sold at present are compatible with USALS and DiSEqC 1.0 and 1.2.
However, some designs much more effectively optimize simultaneous reception from multiple different satellite positions without re-positioning the dish. The vertical axis operates as an off-axis concave parabolic concave hyperbolic Cassegrain reflector, while the horizontal axis operates as a concave convex Cassegrain. The spot from the main dish wanders across the secondary, which corrects astigmatism by its varying curvature. The elliptic aperture of the primary is designed to fit the deformed illumination by the horns. Due to double spill-over, this makes more sense for a large dish.
Switching between satellites is possible by using DiSEqC switches added to a satellite installation, or built-in Duo LNBs or .
Most receivers sold presently are compatible with at least DiSEqC 1.0, which can switch automatically between 4 satellites (all of contemporary Monoblock LNBs) as the user changes channels using the remote control.
DiSEqC 1.1 allows for switching automatically between 16 satellite positions or more (through cascading switches).
Motor-driven dishes assure better optimal focusing for the given dish size; LNB is always in central alignment with the broadcasting satellite, but DiSEqC switches are faster than DiSEqC motors as no physical movement is required.
Principle of operation
Europe
Systems design
Satellite finder
Types
Motor-driven dish
Multi-satellite
VSAT
Homemade dishes
Others
Gallery
See also
External links
|
|